Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression.

نویسندگان

  • Lucía Piacenza
  • Florencia Irigoín
  • María Noel Alvarez
  • Gonzalo Peluffo
  • Martin C Taylor
  • John M Kelly
  • Shane R Wilkinson
  • Rafael Radi
چکیده

Trypanosoma cruzi undergo PCD (programmed cell death) under appropriate stimuli, the mechanisms of which remain to be established. In the present study, we show that stimulation of PCD in T. cruzi epimastigotes by FHS (fresh human serum) results in rapid (<1 h) externalization of phosphatidylserine and depletion of the low molecular mass thiols dihydrotrypanothione and glutathione. Concomitantly, enhanced generation of oxidants was established by EPR and immuno-spin trapping of radicals using DMPO (5,5-dimethylpyrroline-N-oxide) and augmentation of the glucose flux through the pentose phosphate pathway. In the early period (<20 min), changes in mitochondrial membrane potential and inhibition of respiration, probably due to the impairment of ADP/ATP exchange with the cytosol, were observed, conditions that favour the generation of O2*-. Accelerated rates of mitochondrial O2*- production were detected by the inactivation of the redox-sensitive mitochondrial aconitase and by oxidation of a mitochondrial-targeted probe (MitoSOX). Importantly, parasites overexpressing mitochondrial FeSOD (iron superoxide dismutase) were more resistant to the PCD stimulus, unambiguously indicating the participation of mitochondrial O2*- in the signalling process. In summary, FHS-induced PCD in T. cruzi involves mitochondrial dysfunction that causes enhanced O(2)(*-) formation, which leads to cellular oxidative stress conditions that trigger the initiation of PCD cascades; moreover, overexpression of mitochondrial FeSOD, which is also observed during metacyclogenesis, resulted in cytoprotective effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death.

Alkalosis is a clinical complication resulting from various pathological and physiological conditions. Although it is well established that reducing the cellular proton concentration is lethal, the mechanism leading to cell death is unknown. Mitochondrial respiration generates a proton gradient and superoxide radicals, suggesting a possible link between oxidative stress, mitochondrial integrity...

متن کامل

Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells.

Malignant gliomas are resistant to various proapoptotic therapies, such as radiotherapy and conventional chemotherapy. In this study, we show that selenite is preferentially cytotoxic to various human glioma cells over normal astrocytes via autophagic cell death. Overexpression of Akt, survivin, XIAP, Bcl-2, or Bcl-xL failed to block selenite-induced cell death, suggesting that selenite treatme...

متن کامل

Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation.

Mitochondria are known to be involved in the early stage of apoptosis by releasing cytochrome c, caspase-9, and the second mitochondria-derived activator of caspases (Smac). We have reported that overexpression of copper/zinc superoxide dismutase (SOD1) reduced superoxide production and ameliorated neuronal injury in the hippocampal CA1 subregion after global ischemia. However, the role of oxyg...

متن کامل

Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death.

Mitochondria have recently been shown to serve a central role in programmed cell death. In addition, reactive oxygen species (ROS) have been implicated in cell death pathways upon treatment with a variety of agents; however, the specific cellular source of the ROS generation is unknown. We hypothesize that mitochondria-derived free radicals play a critical role in apoptotic cell death. To direc...

متن کامل

Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi.

The epimastigote stage of Trypanosoma cruzi undergoes PCD (programmed cell death) when exposed to FHS (fresh human serum). Although it has been known for over 30 years that complement is responsible for FHS-induced death, the link between complement activation and triggering of PCD has not been established. We have previously shown that the mitochondrion participates in the orchestration of PCD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 403 2  شماره 

صفحات  -

تاریخ انتشار 2007